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To determine how to forward a
packet, an Internet router must perform rout-
ing lookup on the destination IP address.
Since the adoption of classless interdomain
routing in 1993, routing an incoming packet
requires that the router find the longest rout-
ing prefix that matches the destination IP
address.

Researchers have proposed various soft-
ware-based schemes to accelerate the lookup
function.1-3 However, all of these approaches
require at least four to six memory accesses.
With the requirement for higher throughput,
the latency and bandwidth of modern mem-
ory architecture severely limit the number of
memory accesses a system designer can afford.
Clearly, the software-based solutions do not
easily scale up to 10-Gbps processing and
beyond. 

Of the several hardware-based solutions
proposed, some use dedicated special hard-
ware4,5 and others use commercially available
content-addressable memory (CAM).6,7

CAM allows simultaneous comparison
between all indexes and the key (the destina-
tion IP address), and the entry corresponding
to the matched index can be obtained direct-
ly. CAM’s main advantage is that search time
is bounded by a single memory access; thus,
it can guarantee high lookup throughput.
There are two types of CAM: binary, where
each bit position stores only 0 or 1, and

ternary, where each bit position can store 0,
1, or don’t care. Binary CAM allows only
fixed-length comparisons, so it isn’t directly
suitable for longest-prefix matching. A possi-
ble solution is to store prefixes of varying
length in a separate binary CAM, then design
external logic to pick the longest matched
entry from all matched CAM chips.8

Ternary CAM (TCAM) could solve the
longest-prefix-matching problem more direct-
ly.7 In addition to the index, TCAM also
stores a separate mask for each entry. The
mask specifies which bits in the index are
active, thereby specifying the variable-length
prefix. Table 1 is an example routing prefix
table stored in TCAM. 

Commercially available CAM costs much
more than conventional memory, and TCAM
is even more expensive. In addition, they con-
sume more power and dissipate more heat,
posing a system design challenge. Therefore,
it would be advantageous to compact the rout-
ing table so that the system could use fewer
CAM chips. Even for a single CAM chip, a
routing table compaction scheme can help
reduce power consumption and heat dissipa-
tion. Because the number of routing prefixes
is increasing steadily, a routing table com-
paction scheme can also help contain the rout-
ing table size explosion. I propose two
techniques to compact routing tables stored
in TCAM. 
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Prefix compaction
The number of possible routes (next hop)

in a routing table is typically small because only
a limited number of interface cards fit into the
router chassis. In contrast, there are typically
many routing prefixes—in the range of sever-
al thousand. Table 2 shows the number of
routes and routing prefixes in several backbone
routers (http://www.merit.edu/ipma) at major
US Internet Exchange Points (IXP). The rout-
ing table has at least 500 times more prefixes
than routes. It is possible to exploit this dis-
parity to compact a routing table. 

Pruning
The pruning technique eliminates redun-

dant routing prefixes. First I will define some
terms. I use |Pa| to denote the length of prefix
Pa, and I use Pa,i to denote the ith bit of the
prefix, where Pa,1 is the most significant bit
and Pa,|Pa| is the least significant bit. A prefix
Pa is the parent of prefix Pb if the following
three conditions hold:

1. |Pa| < |Pb|.
2. Pa,i = Pb,i for all 1 ≤ i ≤ |Pa|.
3. There is no prefix Pc such that |Pa| < |Pc|

< |Pb|, and Pc,i = Pb,i for all 1 ≤ i ≤ |Pc|.

Intuitively, the parent of prefix Pb is the
longest prefix that matches the first few bits
of Pb. A parent Pa of prefix Pb is an identical
parent if Pa translates to the same route as Pb—
that is, packets matching both prefixes will be
routed to the same next hop. 

The idea of pruning is fairly simple. If Pa is
an identical parent of Pb, then Pb is a redun-
dant routing prefix. To understand this,
assume the longest prefix matched for an IP
address is Pb; by definition, the IP address will

match Pa as well. With Pb removed from the
routing table, Pa becomes the longest matched
prefix. Because they both translate to the same
route, removing Pb makes no difference. Note
that this technique is general enough that it
applies to any routing lookup algorithm,
regardless of how the routing table is stored.
Figure 1 shows an example of pruning. 

Mask extension
The second technique exploits TCAM

hardware’s flexibility. The mask for a routing
prefix stored in TCAM consists of ones (the
same number of ones as the prefix length) fol-
lowed by all zeros. However, TCAM allows
the use of an arbitrary mask, so that the bits
of ones or zeros needn’t be continuous. I call
this technique mask extension because it
extends the mask to be any arbitrary combi-
nation of ones and zeros. 

A simple example helps to describe the
mask extension technique. In Table 1, P1 and
P2 both correspond to the same route, port 7.
It’s possible to combine the two prefixes into
a single entry, with the prefix set to 10001100
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Table 1. A prefix table stored in TCAM.

Next

No. Prefix Mask hop port

P1 10011100 11111100 7
P2 10001100 11111100 7
P3 11011100 11111100 7
P4 10001000 11111000 5
P5 11010000 11110000 4
P6 11110000 11110000 7
P7 10010000 11110000 4

Table 2. Routing table characteristics.

IXP No. of routes No. of prefixes

Mae East 36 23,554
Mae West 40 32,139
Pacific Bell 19 38,791
Aads 37 15,906
Paix 26 29,195

P1 = (01*, port 2)

P2 = (011*, port 2)

P3 = (0110*, port 3)

Figure 1. In this pruning example, the rout-
ing table is organized as a tree structure.
Prefix P1 is an identical parent of P2, and P2

is a parent of P3. P2 is a redundant prefix
that can be removed without affecting rout-
ing functionality.



and the mask set to 11101100, as shown in
Table 3. The zero at bit 4 (counting from the
left) in the mask prevents comparison at that
bit and allows matching of P1 and P2 in the
same entry. Using only the mask extension
technique, Table 3—the compacted version
of the original routing table (Table 1)—has
been reduced from seven entries to five.

The mask extension technique reduces to a
logic minimization problem. In the discus-
sion, I use cube to refer to the combined sin-
gle entry for several prefixes, and cover to refer
to the set of cubes that cover all prefixes. The
problem then becomes: Given a set of prefix-
es with the same length and same route, find
a minimal cover. 

Logic minimization is an NP-complete prob-
lem, so there is little hope of finding an efficient,
exact algorithm. Fortunately, there is a fast,
proven, and very efficient heuristic algorithm—
Espresso-II9—that produces a near-optimal
solution with finite computing resources. 

To show how the mask extension technique
could be implemented, I will first define some
terms. 

• P(l, n): The set of prefixes that have
length l and next hop port n. 

• C(l, n): The set of cubes that cover P(l, n).
This is the result of logic minimization.

• Son: The “on set” for logic minimization.
• Sdc: The “don’t care set” for logic mini-

mization.

• F(P): The set of cubes that cover prefix P.

Figure 2 shows the pseudocode to compact
a routing table using mask extension. The
routine finds the set of routing prefixes with
the same prefix length and route, then uses
the Espresso-II logic minimization algorithm
to compute the minimal cover. The mini-
mize() routine is the Espresso-II logic min-
imization algorithm described by Brayton et
al.9 The routine takes two arguments: the on
set to be minimized, which is the set of pre-
fixes that must be used to compute the cover,
and the don’t care set, which is the set of pre-
fixes that could be used to compute a better
cover. The insertToCAM() routine stores
the compacted table into a TCAM array for
routing lookup. 

Incremental update
The routing table is hardly static. In fact,

there could be hundreds of updates
(inserts/withdraws) per second.10 Most rout-
ing updates are route flaps—that is, the same
prefix is added and then removed repeatedly
in quick succession. It is straightforward to
reduce the number of actual updates by keep-
ing a buffer of recent route update announce-
ments and updating only the end result. This
eliminates most route flaps. Still, tens of
updates per second may be required in back-
bone routers, so a fast update algorithm is nec-
essary. Incremental update for the pruning
technique is quite straightforward. However,
incremental update for the mask extension
technique is nontrivial and requires a fast
update algorithm.

Insertion
When a new prefix arrives, I could remini-

mize the whole set P(l, n) along with the new
prefix, although the computation requirement
would be extensive. Another approach would
be to insert the new prefix directly into the
TCAM array, because a prefix is itself a cube,
although not necessarily the largest cube. This
simple algorithm will eventually reduce the
compaction ratio; it will produce almost no
area savings at all. 

Instead of these two naïve approaches, I will
describe a heuristic minimization algorithm
to facilitate fast incremental insertion. When
a new prefix P is inserted, I compute a mini-
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Table 3. Compacted table using 

mask extension.

No. Prefix Mask Next hop port

P1 and P2 10001100 11101100 7
P1 and P3 10011100 10111100 7

P4 10001000 11111000 5
P5 and P7 10010000 10110000 4

P6 11110000 11110000 7

Compact_routing_table ( )
For all prefix length l 

For all possible next hop n 
C(l, n) = minimize( P(l, n), nil );
insertIntoCAM( C(l, n) );

Figure 2. Pseudocode to compact a routing
table using mask extension.



mal cover Cp, using P as the on set of mini-
mization and the existing compacted table as
the don’t care set. Instead of new prefix P, I
insert minimal cover Cp into the TCAM array.
Because the Cp insertion could make existing
entries in the TCAM array redundant, I exam-
ine each existing entry in turn and remove
entries completely covered by Cp. The
pseudocode for the incremental insertion
algorithm appears in Figure 3.

For example, if I insert a new entry P =
(110011--, 7) into the routing table (Table 1),
Son = {110011--}, Sdc = {100-11--, 1-0111--},
and, after minimization, Cp = 1-0-11--. The
subsequent redundancy check will remove
100-11-- and 1-0111-- from TCAM because
they are completely covered by the new cube
Cp. The resulting C(6, 7) is {1-0-11--}. 

Withdrawal
The algorithm for removing a prefix from

the routing table is more complex because sev-
eral cubes could cover the prefix. I must remove
all cubes covering the prefix and recalculate a
minimum cover from the affected prefixes. Fig-
ure 4 provides an example. C1, C2, and C3 are
cubes, and P1, P2, P3, and P4 are prefixes. 

If P3 needs to be removed, then C2 and C3

must be removed. As a result, P2 and P4 no
longer have any cover, so they must be includ-
ed in the computation for new cover. Note
that P1 isn’t affected, because although C2 is
removed, C1 still covers P1. The incremental
removal algorithm searches for prefixes no

longer covered by cubes and includes them in
the computation for new cover. The
pseudocode for the incremental removal algo-
rithm appears in Figure 5. As in the incre-
mental insertion algorithm, this algorithm
requires eliminating redundant cubes.

For example, if we are removing P1 from
Table 1, Son = {100011--, 110111--}, Sdc = nil,
and, after minimization, set = {100011--,
110111--}. The subsequent loop cannot find
a redundant cube, so the resulting C(6, 7) is
{100011--, 110111--}. 
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Insert_prefix (P) 

Son = { P };

Sdc = C(l, n);

Cp = minimize(Son , Sdc);

For each C in C(l, n)

/* see if C is a subset of Cp */

If (  subset(C, Cp ) 

/* remove C if duplicate */

remove(C, C(l, n) );

/* also remove it from TCAM array */

removeFromCAM( C );

C(l, n) = C(l, n) + {Cp };

insertIntoCAM( {Cp } );

Figure 3. Rather than the new prefix, the incremental inser-
tion algorithm inserts a minimal cover into the TCAM array.

P1

C1

P2

C2

P3 P4

C3

Figure 4. Example cube and prefix relation-
ship. A direct line between a cube and a
prefix means the cube covers the corre-
sponding prefix.

Withdraw_prefix (P ) 
Son = nil ; /* initialize Son */
/* search for prefix affected by removal of P */
For each C in F (P ) 

remove(C, C (l, n) );        /* remove C from the set */
removeFromCAM(C );   /* also remove from TCAM */
For each P′ covered by C 
remove(C, F (P′ ) );   /* remove C as cover for P′ */ 
If ( F (P′ ) = nil )

Son= Son + {P′ };
Sdc = C (l, n);
set = minimize(Son, Sdc )

/* remove redundant cubes */
For each C in C (l, n)

/* if C is a subset of set, remove it */
If ( subset(C, set ) )

remove(C, C (l, n) );
removeFromCAM(C );

C (l, n) = C (l, n) + set;
insertIntoCAM( set );

Figure 5. The incremental withdraw algorithm must find prefixes no longer
covered by cubes and include them in the computation for new minimal cover.



Experimental result
I implemented these algorithms and evalu-

ated their performance on several routing
tables in backbone routers located at major
IXPs. I used the routing tables captured by the
Internet Performance Measurement and
Analysis project (http://www.merit.edu/ipma)
on 7 March 2001. 

I first used pruning to remove redundant
routing prefixes, then the mask extension
technique to further reduce table size. The
Espresso-II algorithm used in the mask exten-
sion step has several options to control mini-
mization quality and runtime. The “exact”
option enables finding the minimal number of
cubes, though not necessarily the minimal
number of literals. (Any bit having the value
1 or 0, rather than don’t care, counts as one
literal.) This is the optimum solution for the
problem because each cube corresponds to
one TCAM entry; minimizing the number of
cubes is equivalent to minimizing the whole
routing table’s size. Reducing the number of
literals doesn’t further compact the routing
table. Theoretically, the runtime could be
quite high for exact minimization. In fact, if
the pruning technique isn’t used, the runtime
for the mask extension step takes twice as long
when exact minimization is enabled. Pruning
first made the routing table substantially
smaller, and different minimization options
didn’t noticeably affect runtime. Therefore, I
show only results with exact minimization
enabled, because it produces a slightly better
compaction result at little extra cost.

Table 4 shows the original table size in
number of prefixes, its size after pruning, and
its size after pruning and mask extension,
along with the percentage savings and the
computation time. Pruning alone consistent-
ly reduces the routing table’s size by roughly

25 percent. With mask extension also applied,
the overall savings ranged from 42.7 to 48 per-
cent. Mask extension saves roughly an addi-
tional 20 percent. Although not shown, mask
extension alone (without pruning) can reduce
table size between 27.3 and 30.4 percent, but
runtime is greater because of the larger input
for logic minimization. The Espresso-II algo-
rithm exhibits exponential runtime with
respect to the input size, so pruning first
reduces the runtime of the mask extension
step. I measured the overall runtime shown in
Table 4 on a Pentium III 500-MHz PC plat-
form. The runtime for large routing tables
becomes much greater because of Espresso-
II’s exponential behavior.

One way to further increase the savings is
through prefix expansion.11 This reduces the
number of possible prefix lengths to a fixed
small number, and increases the size of the on
set at each chosen prefix length. As a result,
there’s an increased chance of better logic min-
imization and therefore a smaller compacted
routing table. The runtime required is sub-
stantially greater, however, because of the huge
input, so the practical use of prefix expansion
is limited.

Large routing tables could require a lot of
time for compaction. Many routing prefixes
have the same length. For example, for the
Pacific Bell routing table, most prefixes are 24
bits long. In particular, there are 11,634 24-
bit-long prefixes for a particular next hop port.
Since the Espresso-II algorithm examines all
11,634 prefixes to produce the cover, a lot of
computation time is spent on 24-bit-long pre-
fixes. It’s possible to reduce the runtime by
breaking the input into smaller sections, min-
imizing them individually, and then combin-
ing the results for final minimization. 

Because of the mask extension technique’s
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Table 4. Routing table compaction result. 

Original size Size after Savings after Size after pruning Savings after pruning

IXP (prefixes) pruning pruning (%) and mask extension and mask extension (%) Runtime(s)

Mae East 23,554 17,791 24.5 13,492 42.7 14.20
Mae West 32,139 24,741 23.0 18,105 43.7 49.30
Pacific Bell 38,791 28,481 26.6 20,166 48.0 77.00
Aads 29,195 21,857 25.1 16,057 45.0 44.10
Paix 15,906 11,828 25.6 8,930 43.9 8.26



long runtime, it should run only once, at
system initialization. Thereafter, the incre-
mental update algorithm should handle
routing updates. The incremental update for
the pruning technique is trivial, so I don’t
evaluate its performance here. Instead, I use
only mask extension to compact the routing
table and then apply the incremental update
algorithm to evaluate its performance. I used
a 12-hour routing update trace captured
from the Mae East IXP. The trace contains
nearly 35,000 updates. I plotted the origi-
nal and the compacted routing table sizes
after each insertion and withdrawal. The
result appears in Figure 6. Clearly, after
numerous updates the compacted table’s size
still closely follows that of the original table,
with the gap remaining fairly constant.
Thus, the incremental update algorithm can
maintain the savings. In fact, at the end of
the trace, the gap between the two lines
increases by nearly 300 entries, because the
larger table at the end presents better opti-
mization opportunities. In my implemen-
tation, the average runtime for each update
is 22 ms on a Pentium III 500-MHz proces-
sor—fast enough to support up to 50
updates per second. Combined with the
route flaps buffering mechanism, the incre-
mental update algorithm can handle typical
updates in the Internet backbone.

Because of the software-based lookup algo-
rithm’s speed limitation, TCAM is help-

ing to solve the longest-prefix-matching
lookup problem in state-of-the-art, high-
speed router design. The space savings in the
simulation result translates directly into cost
savings, because designers can use either fewer
TCAM chips or a smaller capacity TCAM. In
addition, this approach results in less power
consumption and less heat dissipation. The
techniques can also help routers effectively
cope with the routing prefix explosion. MICRO
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